
Webservice version 1

Document version V 1.21

Release date October 14, 2025

Last modified October 13, 2025

Last modified by Goderik Lefebvre

Leerlingen WEB API
Implementation guide

Contents

Document description .. 4

API Basics ... 5

Endpoint .. 5

Versioning ... 5

Character sets .. 5

Request Format and Responses ... 6

Request verbs ... 6

JSON Basics ... 6

Response format .. 7

HTTP Headers .. 7

Request Headers .. 8

Response Headers ... 8

HTTP Status Codes .. 9

Usage restrictions .. 10

Ground rules ... 10

Privacy concerns .. 10

Disclaimer ... 10

Security ... 11

Transport security .. 11

Secure Socket Layer .. 11

Authentication endpoint .. 11

Request authentication .. 11

Calling resources without Access Token ... 11

Getting an Access Token by client credentials .. 12

Getting access for 1 or multiple scopes ... 12

Request token for pre-registrations calls - 1 scope ... 12

Request token for pre-registrations calls - multiple scopes .. 13

Request token for pupil related calls - 1 scope .. 14

Request token for pupil related calls - multiple scopes ... 14

Use of access token .. 15

Request ... 15

Resources ... 17

Pre-registrations ... 18

POST /preregistrations/save .. 18

DELETE /preregistrations/{preRegistrationId} ... 25

GET /preregistrations/{preregistrationId}/status .. 27

Registrations .. 29

GET /registrations?schoolYear={schoolYear}&changedSince={changedSince} ... 29

Students .. 34

GET /students?schoolYear={schoolYear}&refdate={referenceDate}&changedSince={changedSince} 34

GET /students/{studentId}?schoolYear={schoolYear}&refdate={referenceDate} ... 42

Photos ... 44

GET /students/{studentId}/photo ... 44

School history ... 46

GET /schoolHistory?schoolYear={schoolYear}&certificateSource={certificateSource} ... 46

GET /schoolHistory/{studentId}?certificateSource={certificateSource} .. 49

APPENDIX Error-codes and descriptions ... 50

API version history ... 53

References .. 55

List of attachments .. 56

Sample code (.NET) ... 57

 API Version 1
 Document Version v 1.21 4

Document description

This document describes the “Leerlingen” Web API and provides details required for a technical implementation. It
defines the communication model to use when talking to the Web API, including the required security algorithms. It
describes all of the available methods in detail and is illustrated with examples.

Ownership

This document is written and maintained by Informat.

 API Version 1
 Document Version v 1.21 5

API Basics

The provided webservice is implemented as a RESTful service, based on the principles defined by Roy Fielding in his
doctoral dissertation at UC Irvine in 2000.

Representational state transfer (REST) is an abstraction of the architecture of the World Wide Web; more precisely,
REST is an architectural style consisting of a coordinated set of architectural constraints applied to components,
connectors, and data elements, within a distributed hypermedia system. REST ignores the details of component
implementation and protocol syntax in order to focus on the roles of components, the constraints upon their
interaction with other components, and their interpretation of significant data elements.

This chapter describes the basic information you need to interact with the services provided by Informat within the
Leerlingen context.

Endpoint

The production environment is available via:

endpoint = leerlingenapi.informatsoftware.be

Versioning
The Leerlingen WEB API uses url embedded versioning to maintain backwards compatibility during its lifecycle. This
means that we inject the version number in the request URL like this:

https://<endpoint>/<version>/<resource>

Example: https://leerlingenapi.informatsoftware.be/1/{name}

The version number will increase if a release introduces a breaking change or a significant change in the WEB API
implementation. The version number is noted on the first page of this documentation and in the footer of each page.

The current API version number is 1

Using this allows users to upgrade their implementations at their own pace. If a release creates a change that will
break the workings of previous versions, e.g. a change in the underlying data structure, or if a significant change in the
internal logic is added, this will be announced at least 1 month in advance, to allow time for client implementations to
upgrade. These changes will be kept to a minimum, and where possible bundled, to guarantee consistent availability.

Character sets
All service response objects will be formatted with UTF-8 encoding to ensure compatibility with most languages.

 API Version 1
 Document Version v 1.21 6

Request Format and Responses

Request verbs

All request data should be specified in the JSON format.

As per the definition of RESTful services, you can use HTTP verbs to issue different commands to the service.

Normally, you would use GET requests to read data from the service, but in order to allow future expansion of
methods, all GET requests are required to be sent with the POST verb.

If you use an unsupported HTTP request type with a URL that does not support the specified verb, a 405 HTTP error
will be returned, listing the supported HTTP methods for that URL.

Example:

HTTP/1.1 405 Method Not Allowed
Content-Length: 94
Content-Type: application/json
Date: Fri, 18 Oct 2019 10:48:36 GMT
{
}

JSON Basics

The majority of requests and responses to the WEB API use the JavaScript Object Notation (JSON) for formatting the
content and structure of the data and responses.

JSON is used because it is the simplest and easiest solution for working with data within a web browser, as JSON
structures can be evaluated and used as JavaScript objects within the web browser environment.

JSON supports the same basic types as supported by JavaScript, these are:

- Number (either integer or floating-point).

- String; this should be enclosed by double-quotes and supports Unicode characters and backslash escaping.

For example: "A String"

- Boolean - a true or false value. You can use these strings directly. For example: { "value": true }

- Array - a list of values enclosed in square brackets. For example: ["one", "two", "three"]

- Object - a set of key/value pairs (i.e. an associative array, or hash). The key must be a string, but the value can

be any of the supported JSON values. For example:

{

 "servings" : 4,

 "subtitle" : "Easy to make in advance, and then cook when ready",

 "cooktime" : 60,

 "title" : "Chicken Coriander"

}

 API Version 1
 Document Version v 1.21 7

Handling dates (and time)

Dates should always be sent to the server in either UTC format or using the yyyy-MM-dd (hh:mm:ss) notation.

Example:

2019-09-30T15:30:22.000Z // Valid UTC Format
2019-09-30T15:30:22+0100 // Valid UTC Format
2019-09-30
2019-09-30 15:30:22

If you’re using javascript Date() objects in your request body, your browser will automatically convert these to the UTZ
format.

Example:

// javascript
var someDate = new Date(2019,05,21) // will be sent as 2019-05-21T00:00:00.000Z

If you need to send a date and time object, use the UTC format or use yyyy-MM-dd hh:mm:ss

Example:

2019-09-30T22:30:00.000Z // UTC Format
2019-09-30 22:30:00

Boolean

Booleans should always be formatted as true/false (lower case, no quotation marks).

Example:

{
 "isAdmin": true,
 "canAccess": false
}

Response format

The API can return data in both JSON and XML format. To change the return type of the data, add the “Accept” header
to your request with the correct value corresponding to the desired response.

application/json for a JSON formatted response

application/xml for an XML formatted response

The response object will always contain the following fields:

Field Type Availability Description

resultCode integer always

Contains a code that describes the status of the request.

This code is an addition to the HTTP status code.

A list of possible result codes can be found at the end of this document.

resultMessage string always
This field contains a short user friendly description of the returned result
code.

resultDetails object Optional

This field sometimes contains extra details about the request, e.g. specific
details regarding a server side error, or a problem with the request body.

The content of this field is method/action specific and more details can
be found in the resources chapter and in the list of result codes.

HTTP Headers
Because the WEB API uses HTTP for all communication, you need to ensure that the correct HTTP headers are
supplied (and processed on retrieval) so that you get the right format and encoding. Different environments and

 API Version 1
 Document Version v 1.21 8

clients will be more or less strict on the effect of these HTTP headers (especially when not present). Where possible
you should be as specific as possible.

Request Headers

Content-type

Specifies the content type of the information being supplied within the request. The specification uses MIME type
specifications. For the majority of requests this will be JSON (application/json). For some settings the MIME type
will be plain text. When uploading attachments it should be the corresponding MIME type for the attachment or binary
(application/octet-stream).

The use of the correct Content-type header on a request is required, unless the body is empty.

Accept

Specifies the list of accepted data types to be returned by the server (i.e. that are accepted/understandable by the
client). The format should be a list of one or more MIME types, separated by colons.

For the majority of requests the definition should be for JSON data (application/json). For attachments you can
either specify the MIME type explicitly, or use */* to specify that all file types are supported. If the Accept header is not
supplied, then the */* MIME type is assumed (i.e. client accepts all formats).

The use of Accept in queries for Leerlingen is not required, but is highly recommended as it helps to ensure that the
data returned can be processed by the client.

If you specify a data type using the Accept header, Leerlingen will honor the specified type in the Content-type header
field returned. For example, if you explicitly request application/json in the Accept of a request, the returned HTTP
headers will use the value in the returned Content-type field.

For example, when sending a request without an explicit Accept header, or when specifying */*:

POST /1/department HTTP/1.1
Host: leerlingenapi.informatsoftware.be:443
Accept: */*

The returned headers are:

Server: Microsoft IIS/8.8
Date: Fri, 19 Oct 2019 14:28:53 GMT
Content-Type: text/plain;charset=utf-8
Content-Length: 227
Cache-Control: no-cache

Note that the returned content type is text/plain even though the information returned by the request is in JSON
format.

Explicitly specifying the Accept header:

POST /1/department HTTP/1.1
Host: leerlingenapi.informatsoftware.be:443
Accept: application/json

The headers returned include the application/json content type:

Date: Fri, 19 Oct 2019 14:28:53 GMT
Content-Type: application/json
Content-Length: 227
Cache-Control: no-cache

Response Headers

Response headers are returned by the server when sending back content and include a number of different header
fields, many of which are standard HTTP response header and have no significance to Leerlingen operation. The list
of response headers important to Leerlingen are listed below.

 API Version 1
 Document Version v 1.21 9

HTTP Status Codes
With the interface to Leerlingen working through HTTP, error codes and statuses are reported using a combination of
the HTTP status code number, and corresponding data in the body of the response data.

A list of the error codes returned by the WEB API, and generic descriptions of the related errors are provided below.
The meaning of status codes for specific request types is provided in the corresponding API call reference.

Code Text Description

200 OK Request completed successfully.

400 Bad Request Bad request structure. The error can indicate an error with the request
URL, path or headers. Differences in the supplied MD5 hash and content
also trigger this error, as this may indicate message corruption.

401 Unauthorized The item requested was not available using the supplied authorization,
or authorization was not supplied.

403 Forbidden The requested item or operation is forbidden.

404 Not Found The requested content could not be found.

405 Resource Not Allowed A request was made using an invalid HTTP request type for the URL
requested. For example, you have requested a PUT when a POST is
required. Errors of this type can also triggered by invalid URL strings.

406 Not Acceptable The requested content type is not supported by the server.

409 Conflict Request resulted in an update conflict.

415 Bad Content Type The content types supported, and the content type of the information
being requested or submitted indicate that the content type is not
supported.

416 Requested Range Not
Satisfiable

The range specified in the request header cannot be satisfied by the
server.

500 Internal Server Error The request was invalid, either because the supplied JSON was invalid,
or invalid information was supplied as part of the request.

 API Version 1
 Document Version v 1.21 10

Usage restrictions

To be able to balance the load on our servers and the impact on our overall performance, this service requires client
implementations to comply with some basic rules. In case a specific resource or method requires additional rules,
these will be added to the corresponding chapters.

Ground rules
- Cache retrieved data as much as possible, use the provided ID’s and references to maintain data consistency.

- The privacy and security of the private key is the responsibility of the end user. In case the private key is

compromised, the end user is required to inform Informat as soon as possible. We will then take the

necessary steps to ensure the safety of the data. A new private key will then be issued.

Privacy concerns
The user is responsible for the safe and correct processing of all personal data, conform privacy regulations, as is
stipulated in the contract between the user and the supplier, Informat.

Disclaimer
All requests to the service are logged and monitored to aid in the improvement of the service, to help troubleshoot
issues and to avoid abuse.

If Informat finds that the user is found guilty of abuse, Informat reserves the right to terminate the users’ access to the
service if the abuse continues after multiple warnings.

 API Version 1
 Document Version v 1.21 11

Security

Transport security

Secure Socket Layer

To ensure the safety of the transferred data and to prevent data-theft, this service operates only via HTTPS.

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communication security over the Internet. They use X.509 certificates and hence asymmetric
cryptography to authenticate the counterparty with whom they are communicating, and to exchange a symmetric
key. This session key is then used to encrypt data flowing between the parties. This allows for data/message
confidentiality, and message authentication codes for message integrity and as a by-product, message
authentication.

Authentication endpoint

The production environment is available via:

identityEndpoint = https://www.identityserver.be

Request authentication
Modern secure applications often use access tokens to ensure a user has access to the appropriate resources, and
these access tokens typically have a limited lifetime. This is done for various security reasons: for one, limiting the
lifetime of the access token limits the amount of time an attacker can use a stolen token. Also, the information
contained in or referenced by the access token could become stale.

Calling resources without Access Token

When trying to access the API without Access Token, an Unauthorized response will be returned.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer

 API Version 1
 Document Version v 1.21 12

Getting an Access Token by client credentials

The Client Credentials grant type is used by clients to obtain an access token by using a clientId and clientSecret.

Getting access for 1 or multiple scopes

A scope is a permission that is set on a token, a context in which that token may act.

For example, a token with the api_informat_sas_leerlingen.voorinschrijvingen.123456 scope is permitted to read or
write data to the leerlingenapi for the specified institute number, 123456 in this example. Otherwise you would be
denied access.

You can request access for 1 scope but it’s also possible to request a token for multiple scopes. See the following
examples.

Note: The scope has two flavors:

- The pre-registrations calls use the pattern api_informat_sas_leerlingen.voorinschrijvingen.{instituteNo};

- The pupil related calls use the pattern api_informat_sas_leerlingen.leerlingen.{instituteNo}.

The pattern that applies, is listed in each main section (green colored).

Request token for pre-registrations calls - 1 scope

Request

POST https://<identityEndpoint>/connect/token HTTP/1.1
...
Content-Type: application/x-www-form-urlencoded

grant_type: client_credentials
client_id: <received client id>
client_secret: <received client secret>
scope: api_informat_sas_leerlingen.voorinschrijvingen.123456

 API Version 1
 Document Version v 1.21 13

Response

HTTP/1.1 200 OK
...

{
"access_token":"eyJhbGciOiJSUzI1NiIsImtpZCI6IjYyOEM3NzFEM0FCNEI0Rjk4MzRFODkyMTcyMTc2OTk5NjkyNTZFOEQiLCJ
0eXAiOiJKV1QiLCJ4NXQiOiJZb3gzSFRxMHRQbURUb2toY2hkcG1Xa2xibzAifQ.eyJuYmYiOjE1OTM2NzM1MDcsImV4cCI6MTU5MzY
3NzEwNywiaXNzIjoiaHR0cHM6Ly93d3cuaWRlbnRpdHlzZXJ2ZXIuYmUiLCJhdWQiOlsiaHR0cHM6Ly93d3cuaWRlbnRpdHlzZXJ2ZX
IuYmUvcmVzb3VyY2VzIiwiYXBpX2luZm9ybWF0X3Nhc19sZWVybGluZ2VuIl0sImNsaWVudF9pZCI6ImluZm9ybWF0X2N1c3RvbWVyX
2hoc2Nob2xlbiIsInNjb3BlIjpbImFwaV9pbmZvcm1hdF9zYXNfbGVlcmxpbmdlbi52b29yaW5zY2hyaWp2aW5nZW4uMDMyODQ3Il19
.vfTPZYPGGsbbl4Vy1S-FJdvPQTDlcT5m4E2mWFPqPMRBIQINqQBiNfxpH8DUu5cMRvcTFJxCeAsm33Rf-
my0jR1qVBYIlrKgmbIth_gyCNAycHUBAUsd-nYIJIv3Jz20_zM1L3gklUL48fCYc-
hwT1rbS4uRIpHQxDd_sdsNyvUjB9DgMCdxuoqBm0cVzmVvHlH6Fpez-
ttQ5Aymsj0dx0JvAIItVjxVHPqRwA33Sl1iSVogOjfjHP437d4ztFOjzAGUHglwO4eF10ALe_d8D1w3CqjAJGOaqP_W9ttPTATuPvwK
Q2xYaGiL1kPsejTpoRCd176vjv9i3b1dxPiw6FcVffeMUguetub8l8mHVEd0eYEDKUoTmZtp_bAhu5sUq-
eOC3GcJtGwC9TfjTQLtTdgniEfqhX81TZI3Kh2th4z5SOROKt5Sq5RtnN9U9WDrci2DQrfkt5pNg7leMIMqF8AsvuYp5rXGR-
HYWN2YB1uf2YTwIa-wOCshixjdzV4",
"expires_in": 3600,
"token_type": "Bearer",
"scope": "api_informat_sas_leerlingen.voorinschrijvingen.123456"
}

Request token for pre-registrations calls - multiple scopes

Doing a request for multiple scopes can be done by defining all the scopes, separated by a single space.

Request

POST https://<identityEndpoint>/connect/token HTTP/1.1
...
Content-Type: application/x-www-form-urlencoded

grant_type: client_credentials
client_id: <received client id>
client_secret: <received client secret>
scope: api_informat_sas_leerlingen.voorinschrijvingen.123456
api_informat_sas_leerlingen.voorinschrijvingen.456789

Response

HTTP/1.1 200 OK
...

{
"access_token":"eyJhbGciOiJSUzI1NiIsImtpZCI6IjYyOEM3NzFEM0FCNEI0Rjk4MzRFODkyMTcyMTc2OTk5NjkyNTZFOEQiLCJ
0eXAiOiJKV1QiLCJ4NXQiOiJZb3gzSFRxMHRQbURUb2toY2hkcG1Xa2xibzAifQ.eyJuYmYiOjE1OTM2NzM1MDcsImV4cCI6MTU5MzY
3NzEwNywiaXNzIjoiaHR0cHM6Ly93d3cuaWRlbnRpdHlzZXJ2ZXIuYmUiLCJhdWQiOlsiaHR0cHM6Ly93d3cuaWRlbnRpdHlzZXJ2ZX
IuYmUvcmVzb3VyY2VzIiwiYXBpX2luZm9ybWF0X3Nhc19sZWVybGluZ2VuIl0sImNsaWVudF9pZCI6ImluZm9ybWF0X2N1c3RvbWVyX
2hoc2Nob2xlbiIsInNjb3BlIjpbImFwaV9pbmZvcm1hdF9zYXNfbGVlcmxpbmdlbi52b29yaW5zY2hyaWp2aW5nZW4uMDMyODQ3Il19
.vfTPZYPGGsbbl4Vy1S-FJdvPQTDlcT5m4E2mWFPqPMRBIQINqQBiNfxpH8DUu5cMRvcTFJxCeAsm33Rf-
my0jR1qVBYIlrKgmbIth_gyCNAycHUBAUsd-nYIJIv3Jz20_zM1L3gklUL48fCYc-
hwT1rbS4uRIpHQxDd_sdsNyvUjB9DgMCdxuoqBm0cVzmVvHlH6Fpez-
ttQ5Aymsj0dx0JvAIItVjxVHPqRwA33Sl1iSVogOjfjHP437d4ztFOjzAGUHglwO4eF10ALe_d8D1w3CqjAJGOaqP_W9ttPTATuPvwK
Q2xYaGiL1kPsejTpoRCd176vjv9i3b1dxPiw6FcVffeMUguetub8l8mHVEd0eYEDKUoTmZtp_bAhu5sUq-
eOC3GcJtGwC9TfjTQLtTdgniEfqhX81TZI3Kh2th4z5SOROKt5Sq5RtnN9U9WDrci2DQrfkt5pNg7leMIMqF8AsvuYp5rXGR-
HYWN2YB1uf2YTwIa-wOCshixjdzV4",
"expires_in": 3600,
"token_type": "Bearer",
"scope": "api_informat_sas_leerlingen.voorinschrijvingen.123456
api_informat_sas_leerlingen.voorinschrijvingen.456789"
}

 API Version 1
 Document Version v 1.21 14

Request token for pupil related calls - 1 scope

Request

POST https://<identityEndpoint>/connect/token HTTP/1.1
...
Content-Type: application/x-www-form-urlencoded

grant_type: client_credentials
client_id: <received client id>
client_secret: <received client secret>
scope: api_informat_sas_leerlingen.leerlingen.123456

Response

HTTP/1.1 200 OK
...

{
"access_token":"eyJhbGciOiJSUzI1NiIsImtpZCI6IjYyOEM3NzFEM0FCNEI0Rjk4MzRFODkyMTcyMTc2OTk5NjkyNTZFOEQiLCJ
0eXAiOiJKV1QiLCJ4NXQiOiJZb3gzSFRxMHRQbURUb2toY2hkcG1Xa2xibzAifQ.eyJuYmYiOjE1OTM2NzM1MDcsImV4cCI6MTU5MzY
3NzEwNywiaXNzIjoiaHR0cHM6Ly93d3cuaWRlbnRpdHlzZXJ2ZXIuYmUiLCJhdWQiOlsiaHR0cHM6Ly93d3cuaWRlbnRpdHlzZXJ2ZX
IuYmUvcmVzb3VyY2VzIiwiYXBpX2luZm9ybWF0X3Nhc19sZWVybGluZ2VuIl0sImNsaWVudF9pZCI6ImluZm9ybWF0X2N1c3RvbWVyX
2hoc2Nob2xlbiIsInNjb3BlIjpbImFwaV9pbmZvcm1hdF9zYXNfbGVlcmxpbmdlbi52b29yaW5zY2hyaWp2aW5nZW4uMDMyODQ3Il19
.vfTPZYPGGsbbl4Vy1S-FJdvPQTDlcT5m4E2mWFPqPMRBIQINqQBiNfxpH8DUu5cMRvcTFJxCeAsm33Rf-
my0jR1qVBYIlrKgmbIth_gyCNAycHUBAUsd-nYIJIv3Jz20_zM1L3gklUL48fCYc-
hwT1rbS4uRIpHQxDd_sdsNyvUjB9DgMCdxuoqBm0cVzmVvHlH6Fpez-
ttQ5Aymsj0dx0JvAIItVjxVHPqRwA33Sl1iSVogOjfjHP437d4ztFOjzAGUHglwO4eF10ALe_d8D1w3CqjAJGOaqP_W9ttPTATuPvwK
Q2xYaGiL1kPsejTpoRCd176vjv9i3b1dxPiw6FcVffeMUguetub8l8mHVEd0eYEDKUoTmZtp_bAhu5sUq-
eOC3GcJtGwC9TfjTQLtTdgniEfqhX81TZI3Kh2th4z5SOROKt5Sq5RtnN9U9WDrci2DQrfkt5pNg7leMIMqF8AsvuYp5rXGR-
HYWN2YB1uf2YTwIa-wOCshixjdzV4",
"expires_in": 3600,
"token_type": "Bearer",
"scope": "api_informat_sas_leerlingen.leerlingen.123456"
}

Request token for pupil related calls - multiple scopes

Doing a request for multiple scopes can be done by defining all the scopes, separated by a single space.

Request

POST https://<identityEndpoint>/connect/token HTTP/1.1
...
Content-Type: application/x-www-form-urlencoded

grant_type: client_credentials
client_id: <received client id>
client_secret: <received client secret>
scope: api_informat_sas_leerlingen.leerlingen.123456 api_informat_sas_leerlingen.leerlingen.456789

Response

 API Version 1
 Document Version v 1.21 15

HTTP/1.1 200 OK
...

{
"access_token":"eyJhbGciOiJSUzI1NiIsImtpZCI6IjYyOEM3NzFEM0FCNEI0Rjk4MzRFODkyMTcyMTc2OTk5NjkyNTZFOEQiLCJ
0eXAiOiJKV1QiLCJ4NXQiOiJZb3gzSFRxMHRQbURUb2toY2hkcG1Xa2xibzAifQ.eyJuYmYiOjE1OTM2NzM1MDcsImV4cCI6MTU5MzY
3NzEwNywiaXNzIjoiaHR0cHM6Ly93d3cuaWRlbnRpdHlzZXJ2ZXIuYmUiLCJhdWQiOlsiaHR0cHM6Ly93d3cuaWRlbnRpdHlzZXJ2ZX
IuYmUvcmVzb3VyY2VzIiwiYXBpX2luZm9ybWF0X3Nhc19sZWVybGluZ2VuIl0sImNsaWVudF9pZCI6ImluZm9ybWF0X2N1c3RvbWVyX
2hoc2Nob2xlbiIsInNjb3BlIjpbImFwaV9pbmZvcm1hdF9zYXNfbGVlcmxpbmdlbi52b29yaW5zY2hyaWp2aW5nZW4uMDMyODQ3Il19
.vfTPZYPGGsbbl4Vy1S-FJdvPQTDlcT5m4E2mWFPqPMRBIQINqQBiNfxpH8DUu5cMRvcTFJxCeAsm33Rf-
my0jR1qVBYIlrKgmbIth_gyCNAycHUBAUsd-nYIJIv3Jz20_zM1L3gklUL48fCYc-
hwT1rbS4uRIpHQxDd_sdsNyvUjB9DgMCdxuoqBm0cVzmVvHlH6Fpez-
ttQ5Aymsj0dx0JvAIItVjxVHPqRwA33Sl1iSVogOjfjHP437d4ztFOjzAGUHglwO4eF10ALe_d8D1w3CqjAJGOaqP_W9ttPTATuPvwK
Q2xYaGiL1kPsejTpoRCd176vjv9i3b1dxPiw6FcVffeMUguetub8l8mHVEd0eYEDKUoTmZtp_bAhu5sUq-
eOC3GcJtGwC9TfjTQLtTdgniEfqhX81TZI3Kh2th4z5SOROKt5Sq5RtnN9U9WDrci2DQrfkt5pNg7leMIMqF8AsvuYp5rXGR-
HYWN2YB1uf2YTwIa-wOCshixjdzV4",
"expires_in": 3600,
"token_type": "Bearer",
"scope": "api_informat_sas_leerlingen.leerlingen.123456 api_informat_sas_leerlingen.leerlingen.456789"
}

Use of access token

Each API Request must send with the access token as follows

Authorization: BEARER <token>

Example

GET https://leerlingenapi.informatsoftware.be/... HTTP/1.1
Authorization: BEARER
eyJhbGciOiJSUzI1NiIsImtpZCI6IjYyOEM3NzFEM0FCNEI0Rjk4MzRFODkyMTcyMTc2OTk5NjkyNTZFOEQiLCJ0eXAiOiJKV1QiLCJ
4NXQiOiJZb3gzSFRxMHRQbURUb2toY2hkcG1Xa2xibzAifQ.eyJuYmYiOjE1OTM2NzM1MDcsImV4cCI6MTU5MzY3NzEwNywiaXNzIjo
iaHR0cHM6Ly93d3cuaWRlbnRpdHlzZXJ2ZXIuYmUiLCJhdWQiOlsiaHR0cHM6Ly93d3cuaWRlbnRpdHlzZXJ2ZXIuYmUvcmVzb3VyY2
VzIiwiYXBpX2luZm9ybWF0X3Nhc19sZWVybGluZ2VuIl0sImNsaWVudF9pZCI6ImluZm9ybWF0X2N1c3RvbWVyX2hoc2Nob2xlbiIsI
nNjb3BlIjpbImFwaV9pbmZvcm1hdF9zYXNfbGVlcmxpbmdlbi52b29yaW5zY2hyaWp2aW5nZW4uMDMyODQ3Il19.vfTPZYPGGsbbl4V
y1S-FJdvPQTDlcT5m4E2mWFPqPMRBIQINqQBiNfxpH8DUu5cMRvcTFJxCeAsm33Rf-my0jR1qVBYIlrKgmbIth_gyCNAycHUBAUsd-
nYIJIv3Jz20_zM1L3gklUL48fCYc-hwT1rbS4uRIpHQxDd_sdsNyvUjB9DgMCdxuoqBm0cVzmVvHlH6Fpez-
ttQ5Aymsj0dx0JvAIItVjxVHPqRwA33Sl1iSVogOjfjHP437d4ztFOjzAGUHglwO4eF10ALe_d8D1w3CqjAJGOaqP_W9ttPTATuPvwK
Q2xYaGiL1kPsejTpoRCd176vjv9i3b1dxPiw6FcVffeMUguetub8l8mHVEd0eYEDKUoTmZtp_bAhu5sUq-
eOC3GcJtGwC9TfjTQLtTdgniEfqhX81TZI3Kh2th4z5SOROKt5Sq5RtnN9U9WDrci2DQrfkt5pNg7leMIMqF8AsvuYp5rXGR-
HYWN2YB1uf2YTwIa-wOCshixjdzV4

Request

It is mandatory that you provide some information with every request:

- A timestamp

- Your institute number

Institute number

Your institute is added as a header to every request. This header is called “InstituteNo”.

Note that header names are case-insensitive.

C# coding example

Request.Headers.Add("InstituteNo", "999999");

Please make sure that you only add this header once to the request, if you try to add it twice (or with multiple
values), the header will be sent as a comma-separated list of values.

Timestamp

You need to add a timestamp header to every request, containing the current date and time, in UTC format.

https://leerlingenapi.informatsoftware.be/

 API Version 1
 Document Version v 1.21 16

The timestamp header looks like this:

Timestamp: 2019-10-15T15:30:22.000

The following format is also acceptable:

Timestamp: 2019-10-15T15:30:22+0100

 API Version 1
 Document Version v 1.21 17

Resources

This chapter lists all the resources available on the webservice. A resource can be thought of as an entity which you
can get data for.

By default, calling a resource directly will provide you with a list of that resource, while adding an identifier to the URL
will retrieve data for a unique resource.

For example: calling /<endpoint>/students will get you a list of students, while calling /<endpoint>/students/123 will
get you the data for the specific student with ID 123.

On a unique resource, like student 123, you can call other linked resources, to get specific data related to that student.
For example, calling /<endpoint>/students/123/history will get you a dataset that contains the students’ history.

 API Version 1
 Document Version v 1.21 18

Pre-registrations
This chapter describes how to:

- Add your reservation data into Informat as a Pre-registration

- Update an existing pre-registration based on the preRegistrationId

- Delete an existing pre-registration by its preRegistrationId

- Get the status of a pre-registration/registration by its preRegistrationId

It describes all the available methods, their request/response format and provides input/output examples.

Scope pattern: api_informat_sas_leerlingen.voorinschrijvingen.{instituteNo}

POST /preregistrations/save

This call can be used to:

- Add your new online reservation into Informat as a Pre-registration;

- Update an existing pre-registration based on the preRegistrationId;

- Add an “update personal details”-registration by using “000000” as admgrpId (means no admgrp), used when

the original pre-registration is already accepted and can no longer be changed;

- Update an existing “update personal details”-registration based on the preRegistrationId provided during

addition.

When updating, several MNA (Method Not Allowed) validation-errors can be thrown. An overview can be found over
here.

Request

Headers

Besides the mandatory headers, no other custom headers are required.

URL

No url parameters required.

Body

Field Type Required/optional Description

lastName string required
Pupil’s last name

Validation: required and max. 50 characters

firstName string required
Pupil’s first name

Validation: required and max. 50 characters

additionalNames string optional
Additional names of the pupil

Validation: max. 160 characters

dateOfBirth date required

Date of birth

Format: valid UTC Date or yyyy-MM-dd

Validation: required and valid

countryOfBirthCode string required

Country of birth code must be one of the official country
code.

Validation: length must be 5 characters and must be an
official country code.

placeOfBirthCode string optional
Place of birth code is a postal code. If the country of
birth is Belgium then it must be an official BE postal
code.

 API Version 1
 Document Version v 1.21 19

Field Type Required/optional Description

Validation: max. 10 characters

placeOfBirth string optional
Place of birth.

Validation: max. 50 characters

nationalityCode string required

Nationality code must be one of the official nationality
codes.

Validation: length must be 5 characters and must be
an official code.

sex integer required

Possible values for the sex are: 1 or 2

1 = male
2 = female

Validation: must have a value of 1 or 2

insz string optional

The pupil’s identification number. This is either the
Bisnummer, for foreign pupil, or Rijksregisternummer for
Belgium residents.

Format: "yymmddxxxxx"
Example: "85073115025"

Validation: Validates the number, no check on date of
birth or gender.

eIdNo string optional

Some (electronic) residence documents provide/contain
an Id number. This number can be stored by filling up
this field.

Validation: max. 12 characters

eIdPhoto string optional
Some electronic residence documents provide a photo of
the owner. The data must be offered as a delimited
string.

mobilePhone string optional
Own mobile number

Validation: max. 20 characters

email string optional
Private email address

Validation: Validation on email-address format

nameOfDoctor String optional
Name of the pupil’s doctor

Validation: max. 100 characters

phoneOfDoctor String optional
Phone of the pupil’s doctor

Validation: max. 20 characters

firstLanguage string optional Validation: max. 100 characters

isHomeless boolean required
Indicates whether the pupil is someone who changes
shelter or place of residence frequently.

migrating boolean required
Indicates whether the pupil belongs to the migratory
(trekkende) population.

isIndicatorPupil boolean required

Indicates whether the pupil is an indicator pupil.

A pupil who meets at least one of the official indicators,
will be assigned as an indicator pupil.

religion integer optional
Also known as levensbeschouwing.

Example: 63

 API Version 1
 Document Version v 1.21 20

Field Type Required/optional Description

Possible values:

52 = Cultuurbeschouwing
63 = Eigen cultuur en religie
135 = Islamitische godsdienst
136 = Israëlische godsdienst
140 = Katholieke godsdienst
187 = Niet-confessionele zedenleer
194 = Orthodoxe godsdienst
225 = Protestants-evangelische godsdienst
418 = Anglicaanse godsdienst
9999 = Vrijstelling of niet van toepassing

Validation: must be one of the possible values

priorityGroup integer optional

Priority group, also known as voorrangsgroep

Example: 1

Possible values:

1 = Dezelfde leefentiteit
2 = Kind van personeelslid
3 = Kind met minstens 1 ouder die het Nederlands
machtig is
4 = Campusleerling
5 = Indicator- of niet-indicatorleerling
6 = Geen

Validation: must be one of the possible values

reasonForRefusal integer optional

Example: 19

Possible values:

19 = capaciteit

Validation: must be one of the possible values

Relationships array optional Validation: MAX(2)

type integer required

Type of relationship.

Example: 13

Possible values:

0 = leerling
13 = vader
14 = moeder
5 = plusvader
6 = plusmoeder
2 = voogd
9 = grootvader
10 = grootmoeder
7 = pleegvader
8 = pleegmoeder

Note: Type 0 (leerling) isn’t an official relationship type.
The purpose of this type is to be able to send the address
of an adult pupil without creating a relationship. Can, for
example, be applied to nursing. Consequently, it doesn’t
really make sense to define lastName, firstName, insz,
phone, … in this case.

Validation: must be one of the possible values

 API Version 1
 Document Version v 1.21 21

Field Type Required/optional Description

lastName string
required

/
optional

Relation’s last name

Note: This field is only optional in combination with type
0 (leerling).

Validation: required and max. 50 characters

firstName string
required

/
optional

Relation’s first name

Note: This field is only optional in combination with type
0 (leerling).

Validation: required and max. 30 characters

Address object optional

streetName string required
Street name

Validation: max. 50 characters

houseNo string required
Includes the House number & Alpha number

Validation: max. 10 characters

houseBusNo string optional
Bus number

Validation: max. 6 characters

postalCode string required
Postal code must an official one.

Validation: max. 8 characters

city string required
City.

Validation: max. 30 characters

countryCode string required

Country code must be one of the official country codes.

Validation: length must be 5 characters and must
appear in the list of “countries”.

isDomicileAddress boolean required
Indicates whether the defined address is a domicile
address

isWritingAddress boolean required
Indicates whether the defined address is a writing
address

isResidenceAddress boolean required
Indicates whether the defined address is residence
address

phone string optional
Domicile phone number

Validation: max. 20 characters

mobilePhone string optional
Own mobile number

Validation: max. 20 characters

email string optional
Private email address

Validation: Validation on email-address format

insz string optional

The relation’s national registration number. This is either
the Bisnummer, for foreign pupil, or Rijksregisternummer
for Belgium residents.

Format: "yymmddxxxxx"
Example: "85073115025"

Validation: Validates the number

 API Version 1
 Document Version v 1.21 22

Field Type Required/optional Description

preRegistrationId GUID required

A mandatory unique identifier which will be used to
identify the pre-registration. Other calls like the update,
consult, … are based on this Id.

Validation: Id Not empty

schoolyear string Required

The school year in which the pupil’s registration takes
place.

Validation: format: “2019-20”

institute string required
Official institute number

Validation: 6 characters (digits)

structure string required
‘Hoofdstructuur’ of the institute (111, 311,…)

Validation: 3 characters

locationId string required

Official Discimus location number

Validation: 3 characters (digits) &
if formatted correctly, a check is done to verify
whether this id exists within the students admin
module for the provided instituteNo and school
year. See error code “BR037C” for the error
description.

admgrpId string required

Official education number (Administratieve groep)

Validation: 6 characters (digits) and must be an
existing admgrp

admgrpDetail

string optional

Additional information about the education (1ste jaar
kleuter, Latijn,…)

Validation: max 200 characters

preRegistrationDate date
optional/

required

Pre-registration date and time of the online
reservation/pre-registration.

Format: valid UTC Date

Validation: Pre-Registrationdate is only required if
admgrpId is not equal to “000000” (no admgrp). And
if provided, this date must be on or before the
Start Date.

startDate date required

The date the pupil starts the lessons. Startdate shouldn’t
be Saturday or Sunday, except on September 1st.

Format: valid UTC Date or yyyy-MM-dd

Validation: Start Date is required and must be
between beginning and end of defined school year.

registrationStatus integer required

Possible values for the registration status: 0 or 1
0 = Realized (gerealiseerd)
1 = Not realized (niet-gerealiseerd)

Validation: Must have a value of 0 or 1.

remark string optional
Remark on registration level

Validation: no length validation.

 API Version 1
 Document Version v 1.21 23

Field Type Required/optional Description

assignedViaRegistrationSystem boolean optional

Indicates whether this pre-registration is assigned via a
registration system (aanmeldingssysteem).

The (default) value is false, if not provided.

Format: true or false

Responses

A response without validation errors, contains a “preRegistrationStatus”-object.

Field Type Description

preRegistrationId GUID
Unique identifier which identifies the pre-registration. Determined during the
creation of the pre-registration.

status string
Status of the pre-registration. The status will always be “open” after a creation.

Possible values: open, accepted, refused

 API Version 1
 Document Version v 1.21 24

Example request

POST https://<endpoint>/<version>/preregistrations/save HTTP/1.1
InstituteNo: 999999
Timestamp: 2020-02-29T00:00:00.000Z
Authorization: BEARER
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1bmlxdWVfbmFtZSI6IkluZm9ybWF0IiwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdC
IsImF1ZCI6ImFlZjAwMjdlNzNmOTU0MzVmNzc4MWEwY2ZhZDU5ZTVkIiwiZXhwIjoxNTc0NTIxODM3LCJuYmYiOjE1NzQzNDkwMzd9.
WOXKKj_a1-BaS3syFf-3k-ZT9JGS1_MLdHo4PqnE8eY
Accept: application/json
Content-Type: application/json
Content-Length: 1044
{
 "lastName": "Eastwood",
 "firstName": "Scott",
 "additionalNames": null,
 "dateOfBirth": "2010-04-01",
 "countryOfBirthCode": "00150",
 "placeOfBirthCode": "8600",
 "placeOfBirth": null,
 "nationalityCode": "00150",
 "sex": 1,
 "insz": "10040115670",
 "eIdNo": "1234",
 "eIdPhoto": "",
 "mobilePhone": "",
 "email": "Scott.Eastwood@telenet.be",
 "nameOfDoctor": "Ever young",
 "phoneOfDoctor": null,
 "firstLanguage": "Vlaams",
 "isHomeless": false,
 "migrating": false,
 "isIndicatorPupil": true,
 "religion": null,
 "priorityGroup": null,
 "reasonForRefusal": null,
 "Relationships":
 [
 {
 "type": 13,
 "lastName": "Eastwood",
 "firstName": "Clint",
 "phone": null,
 "mobilePhone": null,
 "email": "TisTeZot@telenet.be",
 "insz": "80031516717",
 "Address":
 {
 "streetName": "Nijverheidslaan",
 "houseNo": "120A",
 "houseBusNo": null,
 "postalCode": "8600",
 "city": "Diksmuide",
 "countryCode": "00150",
 "isDomicileAddress": true,
 "isWritingAddress": false,
 "isResidenceAddress": true
 }
 }
],

 "preRegistrationId": "EA840317-856F-4280-BE8F-DE0A46E2935F",
 "schoolyear": "2020-21",
 "institute": "123456",
 "structure": "211",
 "locationId": "001",
 "admgrpId": "040102",
 "admgrpDetail": "Test jaar",

 API Version 1
 Document Version v 1.21 25

 "preRegistrationDate": "2020-06-05T10:15",
 "startDate": "2020-09-01",
 "registrationStatus": 1,
 "remark": "Mijn eerste test registratie"
 "assignedViaRegistrationSystem": true
}

Example response

Response without validation errors

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Date: Sat, 29 Feb 2020 09:10:46 GMT
Content-Length: 212
{
 "preRegistrationStatus": {
 "preRegistrationId": "EA840317-856F-4280-BE8F-DE0A46E2935F",
 "status": "open"
 },
 "status": 200,
 "message": null
}

Response with validation errors

HTTP/1.1 400 Bad Request
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Date: Thu, 07 May 2020 09:10:46 GMT
Content-Length: 212
{
 "errors": [
 {
 "code": "BR010A",
 "message": "Invalid Insz"
 },
 {
 "code": "BR035B",
 "message": "Institute must have a lenght of 6 characters"
 },
 {…}
],
 "status": 400,
 "message": "One or more validation errors occurred. See errors for more details."
}

DELETE /preregistrations/{preRegistrationId}

Delete your online Pre-registration data.

Request

Headers

Besides the mandatory headers, no other custom headers are required.

URL

Field Type Required/optional Description

preRegistrationId GUID required
The unique identifier of the pre-registration.
Format: D919481D-6AFD-402C-B97E-795A8075503B

 API Version 1
 Document Version v 1.21 26

Body

This request has an empty body.

Response

The response contains the “preRegistrationStatus”-object, but will always be null since the pre-registration was

removed.

Example request

Request

DELETE https://<endpoint>/<version>/preregistrations/D919481D-6AFD-402C-B97E-795A8075503B HTTP/1.1
InstituteNo: 999999
Timestamp: 2019-11-01T00:00:00.000Z
Authorization: BEARER
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1bmlxdWVfbmFtZSI6IkluZm9ybWF0IiwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdC
IsImF1ZCI6ImFlZjAwMjdlNzNmOTU0MzVmNzc4MWEwY2ZhZDU5ZTVkIiwiZXhwIjoxNTc0NTIxODM3LCJuYmYiOjE1NzQzNDkwMzd9.
WOXKKj_a1-BaS3syFf-3k-ZT9JGS1_MLdHo4PqnE8eY
Accept: application/json
Content-Type: application/json
Content-Length: 0

Example response

Response without errors

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Thu, 07 May 2020 09:10:46 GMT
Content-Length: 212
{
 "preRegistrationStatus": null,
 "status": 200,
 "message": null
}

Response with error

HTTP/1.1 405 Method Not Allowed
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Thu, 07 May 2020 09:10:46 GMT
Content-Length: 212
{
 "errors": [
 {
 "code": "MNA004",
 "message": "This Pre-Registration has been refused, and can no longer be deleted"
 }
],
 "status": 405,
 "message": "Not allowed exception"
}

 API Version 1
 Document Version v 1.21 27

GET /preregistrations/{preregistrationId}/status

Gets the status of a pre-registration/registration by its preRegistrationId. This is the same response as you should get
after a successful save operation.

Request

Headers

Besides the mandatory headers, no other custom headers are required.

URL

Field Type Required/optional Description

preRegistrationId GUID required
The unique identifier of the pre-registration/registration.
Format: D919481D-6AFD-402C-B97E-795A8075503B

Body

This request has an empty body.

Response

The response contains the “preRegistrationStatus”-object, mentioned earlier.

Field Type Description

preRegistrationId GUID
Unique identifier which identifies the pre-registration. Determined during the
creation of the pre-registration.

status string
Status of the pre-registration/registration.
Possible values are: open, accepted, refused

Example request

Request

GET https://<endpoint>/<version>/preregistrations/D919481D-6AFD-402C-B97E-795A8075503B/status HTTP/1.1
InstituteNo: 999999
Timestamp: 2019-11-01T00:00:00.000Z
Authorization: BEARER
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1bmlxdWVfbmFtZSI6IkluZm9ybWF0IiwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdC
IsImF1ZCI6ImFlZjAwMjdlNzNmOTU0MzVmNzc4MWEwY2ZhZDU5ZTVkIiwiZXhwIjoxNTc0NTIxODM3LCJuYmYiOjE1NzQzNDkwMzd9.
WOXKKj_a1-BaS3syFf-3k-ZT9JGS1_MLdHo4PqnE8eY
Accept: application/json
Content-Type: application/json
Content-Length: 0

Example response

Response for an existing <preregistrationId> of a pre-registration/registration

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Thu, 01 Nov 2019 09:10:46 GMT
Content-Length: 212
{
 "preRegistrationStatus": {
 "preRegistrationId": "d919481d-6afd-402c-b97e-795a8075503b",
 "status": "open"
 },
 "status": 200,
 "message": null
}

 API Version 1
 Document Version v 1.21 28

Response for a non-existing <preregistrationId>

HTTP/1.1 404 Not Found
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Thu, 07 May 2020 09:10:46 GMT
Content-Length: 114
{
 "errors": [
 {
 "code": "DNF001",
 "message": "No registration found for Pre-Registration Id 564dc62a-e531-48b0-bcdc-
93cb834cb5e8"
 }
],
 "status": 404,
 "message": "Data not found exception"
}

 API Version 1
 Document Version v 1.21 29

Registrations
This chapter describes how to:

- Get all registrations for an institute number and school year.

It describes all the available methods, their request/response format and provides input/output examples.

Scope pattern: api_informat_sas_leerlingen.leerlingen.{instituteNo}

GET /registrations?schoolYear={schoolYear}&changedSince={changedSince}

Gets all the registrations for the combination institute number and school year. The institute number is defined via

the mandatory header “InstituteNo” and the school year must be send via the URL.

Request

Headers

Besides the mandatory headers, no other custom headers are required.

URL

Field Type Required/optional Description

schoolYear string required

Limits the output results to registrations within the given schoolyear.

Format: “2022-23”

If not provided a bad request with error code “BR001” and message
“Invalid school year” will be returned.

changedSince date optional

Limits the output results to those registrations whose data has been
changed since a certain date.
Our internal “changedSince” date is determined based on a collection of
change dates at different levels (depending on the content of the
response).

No results will return in case:

• nothing has been changed;

• the “changedSince”-date sent, lays too far in the past.

Body

This request has an empty body.

Response

The response contains a list of registrations.

Field Type Description

inschrijvingsId GUID
Unique identifier for the registration
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

pInschr integer

Unique integer-value for the registration within the database

Note: This value may have changed after data migration. Therefore, the
inschrijvingsId is more suitable as a reference value.

pPersoon integer Unique integer-value for the student within the database

persoonId GUID
Unique identifier for the student
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

instelnr string Official institute number of the school

 API Version 1
 Document Version v 1.21 30

Format: 6 characters (digits)

hfdstructuur string Structure of the institute (111, 311,…)

school string Descriptive name of the school

stamnr string
Students’ stamnummer
Format: 9 characters (digits) or null if not available

vestCode string Own defined location code

vestiging string Own descriptive name of the location

begindatum date
Date the registration starts
Format: : yyyy-MM-dd

einddatum date
Date the registration ends
Format: : yyyy-MM-dd or null if empty

afdCode string Own defined department code

nrAdmgrp string
Official education number (Administratieve groep)

Format: 6 characters (digits)

afdelingsjaar string Department year

status integer

Registration status

Possible values:
0 = Gerealiseerd
1 = Niet-gerealiseerd
2 = Uitgesteld
3 = Parallel
4 = Aanmelding

graad string Degree

leerjaar int Grade

taalkeuze string Choice of language-options

finCode string

Finance ability code

Possible values secundary education:
01 = Vrije leerling
02 = Regelmatig / financierbaar
03 = Regelmatig / niet financierbaar
11 = Vrije leerling in erkende privéschool
13 = Regelmatige leerling in erkende privéschool
20 = Financierbare GON-leerling
22 = Niet-financierbare GON-leerling
99 = Onder voorbehoud aanvaarde leerling

Possible values primary education:
01 = Coëfficiënt 1 - 100% financierbaar
02 = Coëfficiënt 1,5 - 150% financierbaar
03 = Niet financierbaar, maar telt wel mee voor de leerplichtcontrole en
de financieringswet
11 = Vrije leerling in erkende privéschool
13 = Regelmatige leerling in erkende privéschool
20 = Financierbare GON-leerling
22 = Niet-financierbare GON-leerling

levensbeschouwingCode string

Religion code

Possible values:
0000 = Blanco
52 = Cultuurbeschouwing
63 = Eigen cultuur en religie
135 = Islamitische godsdienst
136 = Israëlische godsdienst
140 = Katholieke godsdienst

 API Version 1
 Document Version v 1.21 31

187 = Niet-confessionele zedenleer
194 = Orthodoxe godsdienst
225 = Protestants-evangelische godsdienst
418 = Anglicaanse godsdienst
9999 = Vrijstelling of niet van toepassing

isOkan bool Indicates whether it is a registration for a foreign-speaking new student

preRegistrationId GUID

Unique identifier for the pre-registration, linked to a registration.
This Id is provided by you when adding a new pre-registration via the
“/preregistrations/save”-call.
The preRegistrationId can only be returned when the pre-registration is registered
via the API and accepted via the student administration module.

Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50} or null if not available

inschrklassen array List of class registrations

inschrKlasId GUID
Unique identifier for the class registration
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

pInschrKlas integer

Unique integer-value for the class registration within the database.

Note: This value may have changed after data migration. Therefore, the
inschrKlasId is more suitable as a reference value.

klasId GUID
Unique identifier for the class
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

pklas integer

Unique integer-value for the class within the database.

Note: This value may have changed after data migration. Therefore, the klasId is
more suitable as a reference value.

klasCode string Own class code

klas string Own class name

groepType integer

Class type

Possible values:
0 = Official/main class
1 = Sub class
3 = OLOD group

klasnummer integer Student’s class number

begindatum date
Date the class registration starts
Format: : yyyy-MM-dd

einddatum date
Date the class registration ends
Format: : yyyy-MM-dd or null if empty

klassenleraars array List of class teachers (klassenlera(a)r(es))

persoonId GUID
Unique identifier for the teacher.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

naam string Teacher’s last name

voornaam string Teacher’s first name

 API Version 1
 Document Version v 1.21 32

Example request

Request

GET https://<endpoint>/<version>/registrations?schoolYear=2022-23 HTTP/1.1
InstituteNo: 999999
Timestamp: 2023-01-09T00:00:00.000Z
Authorization: BEARER
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1bmlxdWVfbmFtZSI6IkluZm9ybWF0IiwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdC
IsImF1ZCI6ImFlZjAwMjdlNzNmOTU0MzVmNzc4MWEwY2ZhZDU5ZTVkIiwiZXhwIjoxNTc0NTIxODM3LCJuYmYiOjE1NzQzNDkwMzd9.
WOXKKj_a1-BaS3syFf-3k-ZT9JGS1_MLdHo4PqnE8eY
Accept: application/json
Content-Type: application/json

Example response

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Mon, 09 Jan 2023 16:06:30 GMT

{
 "registrations": [
 {
 "inschrijvingsId": "bd26bb65-f54a-488d-866b-e1f9927d6be5",
 "pInschr": 175926,
 "pPersoon": 69780,
 "persoonId": "5b8f64c5-3968-4b13-b962-e4acda9601bc",
 "instelnr": "999999",
 "hfdstructuur": "311",
 "school": "TEST GO! Technisch Atheneum",
 "stamnr": "20200688",
 "vestCode": "molenst2",
 "vestiging": "Molenstraat 2",
 "begindatum": "2021-09-01T00:00:00",
 "einddatum": null,
 "afdCode": "Grieks",
 "nrAdmgrp": "040092",
 "afdelingsjaar": "2° jaar Grieks",
 "status": 1,
 "graad": "1",
 "leerjaar": 2,
 "taalkeuze": "Frans - Engels",
 "finCode": "02",
 "levensbeschouwingCode": "0000",
 "isOkan": false,
 "preRegistrationId": "53a3bb93-d269-46b5-86fa-08193bd4ba30",

 API Version 1
 Document Version v 1.21 33

 "inschrKlassen": [
 {
 "inschrKlasId": "a6a278e3-52c1-42c0-8e03-85331a5e683f",
 "pInschrKlas": 310301,
 "klasId": "82c5ad0d-8f0c-4b9d-b2de-752c7e5a3bd4",
 "pKlas": 26888,
 "klasCode": "2B HO",
 "klas": "2B HO2",
 "groepType": 0,
 "klasnummer": 0,
 "begindatum": "2021-09-01T00:00:00",
 "einddatum": "2022-01-18T00:00:00",
 "klassenleraars": [
 {
 "persoonId": "96CBbe89-f442-48b1-845c-b18e4Aceeae9",
 "naam": "Walschaerts",
 "voornaam": "Frank"
 }
]
 }
]
 },
 {…}
]
}

Response for missing school year:

HTTP/1.1 400 Bad Request
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Thu, 07 May 2020 09:10:46 GMT

{
 "errors": {
 "code": "BR001",
 "message": "Invalid school year ''"
 },
 "status": 400,
 "message": "Invalid school year"
}

 API Version 1
 Document Version v 1.21 34

Students
This chapter describes how to:

- Get all students with a registration for an institute number, school year and reference date;

- Get a student by studentId.

It describes all the available methods, their request/response format and provides input/output examples.

Scope pattern: api_informat_sas_leerlingen.leerlingen.{instituteNo}

GET
/students?schoolYear={schoolYear}&refdate={referenceDate}&changedSince={changedSince}

Gets all students with a registration for a given institute number, school year and reference date falling between

registration’s begin & end date.

The institute number is defined via the mandatory header “InstituteNo” and the school year must be send via the URL.

The ReferenceDate is optional, but will be calculated automatically if not provided (see request for more information).

Request

Headers

Besides the mandatory headers, no other custom headers are required.

URL

Field Type Required/optional Description

schoolYear string required

Limits the output results to students which have a registration within
the given schoolyear.

Format: “2022-23”

If not provided a bad request with error code “BR001” and message
“Invalid school year” will be returned.

referenceDate date optional

Limits the output results to students which have a registration where
the reference date falls between registration’s begin & end date.

If the reference date is not provided, today’s date will be taken.

In any case the reference date will be overridden as follows if it falls
outside the boundaries of the provided school year:

- Reference date < beginning of school year => reference date will

be overridden with begin date of school year;

- Reference date > end of school year => reference date will be

overridden with end date of school year.

changedSince date optional

Limits the output results to those students whose data has been
changed since a certain date.
Our internal “changedSince” date is determined based on a collection of
change dates at different levels (depending on the content of the
response).

Body

This request has an empty body.

 API Version 1
 Document Version v 1.21 35

Response

The response contains a list of students.

Field Type Description

pPersoon integer Unique integer-value for the student within the database.

persoonId GUID
Unique identifier for the student.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

naam string Student’s last name.

voornaam string Student’s first name.

geboortedatum date
Student’s date of birth.
Format: yyyy-MM-dd or null if empty

nickname string Student’s nickname.

voornaam2 string Student’s additional names.

initialen string Student’s initials.

geboorteland string Student’s country of birth.

geboorteplaats string Student’s place of birth.

nationaliteitCode string Student’s official nationality codes.

rijksregisternr string
Student’s national registration number for Belgium residents.
Format: ”yymmddxxxxx” if provided

bisnr string
Students national registration number for a foreign person.
Format: 11 characters (digits) if provided

geslacht string
Student’s sex.
Possible values: ”M” or ”V”

huisdokter string Name of the student’s doctor.

telefoonHuisdokter string Phone number of the student’s doctor.

llOpSchool integer Student’s place in line at school.

inschrijvingsId GUID

Unique identifier of the actual registration.

The actual registration is determined by the provided InstituteNo, school year,
reference date (between registration’s begin & end date) and registration status =
0 (gerealiseerd).
If no such registration is found, inschrijvingsId will be null.

leerlingenkaartNummer string Studentcard number

fietsNummer string Bike number

adressen array List of domicile addresses (usually one).

pAdres integer Unique integer-value for the address within the database.

adresId GUID
Unique identifier for the address.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

aanspreekTitel string Addressable title.

aanspreekNaam string Addressable name.

straat string Street name.

nr string House number & Alpha number.

bus string Bus number

 API Version 1
 Document Version v 1.21 36

postcode string Postal code (main).

gemeente string Town (main).

landcode string Country code

isFacturatie bool Indicates whether this address is a invoice address.

isAanschrijf bool Indicates whether this address is a writing address.

isVerblijf bool Indicates whether this address is a residence address.

isOverige bool Indicates whether this address is of another type then the provided ones.

percentage decimal Cost allocation percentage.

overigeAdressen array
List of additional addresses other than the domicile address or the relationship
addresses.

pAdres integer Unique integer-value for the address within the database.

adresId GUID
Unique identifier for the address.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

aanspreekTitel string Addressable title.

aanspreekNaam string Addressable name.

straat string Street name.

nr string House number & Alpha number.

bus string Bus number

postcode string Postal code (main).

gemeente string Town (main).

landcode string Country code

isFacturatie bool Indicates whether this address is a invoice address.

isAanschrijf bool Indicates whether this address is a writing address.

isVerblijf bool Indicates whether this address is a residence address.

isOverige bool Indicates whether this address is of another type then the provided ones.

percentage decimal Cost allocation percentage.

relaties array List of relationships.

pRelatie integer Unique integer-value for the relationship within the database.

relatieId GUID
Unique identifier for the relationship.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

type string
Relationship type
Examples: Vader, Moeder, Plusvader, Plusmoeder, …

naam string Relation’s last name

voornaam string Relation’s first name

insz string

Relation’s national registration number. This is either the Bisnummer, for foreign
pupil, or Rijksregisternummer for Belgium residents.

Format: "yymmddxxxxx"
Example: "85073115025"

geboortedatum date
Relation’s date of birth.
Format: yyyy-MM-dd or null if empty

geslacht string
Relation’s sex.
Possible values: ”M” or ”V”

 API Version 1
 Document Version v 1.21 37

nationaliteitCode string Relation’s official nationality codes.

beroep string Relation’s profession.

burgerlijkeStand string Relation’s civil status.

lpv integer
Indicates if the relation is marked as a school attendance officer and defines if
it’s the first or second one.

ophalen bool Indicates if the relation picks up the student from school.

isOverleden bool Indicates if the relation is deceased.

adressen array
List of addresses linked to the relationship (usually one, and most likely a
domicile address).

pAdres integer Unique integer-value for the address within the database.

adresId GUID
Unique identifier for the address.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

aanspreekTitel string Addressable title.

aanspreekNaam string Addressable name.

straat string Street name.

nr string House number & Alpha number.

bus string Bus number

postcode string Postal code (main).

gemeente string Town (main).

landcode string Country code

isFacturatie bool Indicates whether this address is a invoice address.

isAanschrijf bool Indicates whether this address is a writing address.

isVerblijf bool Indicates whether this address is a residence address.

isOverige bool Indicates whether this address is of another type then the provided ones.

percentage decimal Cost allocation percentage.

comnrs array List of communication numbers linked to the relationship.

pComnr integer Unique integer-value for the communication number within the database.

nr string Communication number.

type string Communication number type.

soort string
Communication number sort.
Possible values: Telefoon, Fax or Gsm

emails array List of email addresses linked to the relationship.

pEmail integer Unique integer-value for the email address within the database.

email string Email address.

type string
Email address type.
Examples: Eigen, School, Privé, Ouders, …

schoolcom bool Indicates if this email address can be used for school communication purposes.

factuurMailen bool Indicates if this email address can be used to mail invoices.

comnrs array List of communication numbers not linked to a relationship.

pComnr integer Unique integer-value for the communication number within the database.

 API Version 1
 Document Version v 1.21 38

nr string Communication number.

type string
Communication number type.
Examples: Eigen, Privé nummer, Ouders, Vader, Moeder, …

soort string
Communication number sort.
Possible values: Telefoon, Fax or Gsm

emails array List of email addresses not linked to a relationship

pEmail integer Unique integer-value for the email address within the database.

email string Email address.

type string
Email address type.
Examples: Eigen, School, Privé, Ouders, …

schoolcom bool Indicates if this email address can be used for school communication purposes.

factuurMailen bool Indicates if this email address can be used to mail invoices.

bankrek array
List of bank account linked to the student.
Returns a “null” or an empty list, if not provided.

type int

Bank account type.

Possible values:
1 = Persoonlijk
2 = Ouders
3 = Vader
4 = Moeder
6 = Voogd
8 = Andere

iban string International bank account number.

bic string
Bank Identification Code.
Format: 8 to 11 characters

Example request

Request

GET https://<endpoint>/<version>/students?schoolYear=2022-23 HTTP/1.1
InstituteNo: 999999
Timestamp: 2023-01-09T00:00:00.000Z
Authorization: BEARER
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1bmlxdWVfbmFtZSI6IkluZm9ybWF0IiwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdC
IsImF1ZCI6ImFlZjAwMjdlNzNmOTU0MzVmNzc4MWEwY2ZhZDU5ZTVkIiwiZXhwIjoxNTc0NTIxODM3LCJuYmYiOjE1NzQzNDkwMzd9.
WOXKKj_a1-BaS3syFf-3k-ZT9JGS1_MLdHo4PqnE8eY
Accept: application/json
Content-Type: application/json

 API Version 1
 Document Version v 1.21 39

Example response

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Tue, 10 Jan 2023 09:36:29 GMT

{
 "students": [
 {
 "pPersoon": 69780,
 "persoonId": "5b8f64c5-3968-4b13-b962-e4acda9601bc",
 "naam": "Van Damme",
 "voornaam": "Thomas",
 "geboortedatum": "2001-12-20T00:00:00",
 "nickname": " Van Damme Tom",
 "voornaam2": "",
 "initialen": "",
 "geboorteland": "België",
 "geboorteplaats": "KORTRIJK",
 "nationaliteitCode": "00150",
 "rijksregisternr": "12345678910",
 "bisnr": null,
 "geslacht": "M",
 "huisdokter": "Dr. Ever Young",
 "telefoonHuisdokter": "",
 "llOpSchool": 0,
 "inschrijvingsId": "724a9169-7e92-4f8e-a875-1d8dff1d6662",
 "leerlingenkaartNummer": "LK:012",
 "fietsnummer": "B012",
 "adressen": [
 {
 "pAdres": 80000,
 "adresId": "67c7633a-f3d9-4f82-b600-8bc617cf851c",
 "aanspreekTitel": "Aan de vader van",
 "aanspreekNaam": "Van Damme Thomas",
 "straat": "Stationsstraat",
 "nr": "100",
 "bus": "2",
 "postcode": "8600",
 "gemeente": "DIKSMUIDE",
 "landcode": "00150",
 "isFacturatie": true,
 "isAanschrijf": true,
 "isVerblijf": true,
 "isOverige": false,
 "percentage": 100
 }
],
 "overigeadressen": [
 {
 "pAdres": 80101,
 "adresId": "a3f4e242-f94d-484b-a088-d129314144b9",
 "aanspreekTitel": "Aan de grootmoeder van",
 "aanspreekNaam": "Van Damme Thomas",
 "straat": "Veurnsestraat",
 "nr": "33",
 "bus": "A",
 "postcode": "8930",
 "gemeente": "MENEN",
 "landcode": "00150",
 "isFacturatie": false,
 "isAanschrijf": true,
 "isVerblijf": false,
 "isOverige": false,
 "percentage": 0

 API Version 1
 Document Version v 1.21 40

 }
],
 "relaties": [
 {
 "pRelatie": 72936,
 "relatieId": "8a002367-18ac-45cd-a91c-493b2f317a69",
 "type": "Vader",
 "naam": "Van Damme",
 "voornaam": "Jean",
 "insz": null,
 "geboortedatum": "1976-03-06T00:00:00",
 "geslacht": "M",
 "nationaliteitCode": "00150",
 "beroep": "Zelfstandige",
 "burgerlijkeStand": "Gescheiden",
 "lpv": 1,
 "ophalen": false,
 "isOverleden": false,
 "adressen": [
 {
 "pAdres": 80000,
 "adresId": "67c7633a-f3d9-4f82-b600-8bc617cf851c",
 "aanspreekTitel": "Aan de vader van",
 "aanspreekNaam": "Van Damme Thomas",
 "straat": "Stationsstraat",
 "nr": "100",
 "bus": "2",
 "postcode": "8600",
 "gemeente": " DIKSMUIDE ",
 "landcode": "00150",
 "isFacturatie": true,
 "isAanschrijf": true,
 "isVerblijf": true,
 "isOverige": false,
 "percentage": 100
 }
],
 "comnrs": [
 {
 "pComnr": 156687,
 "nr": "0404 95 22 52",
 "type": "Vader",
 "soort": "Gsm"
 }
],
 "emails": [
 {
 "pEmail": 59294,
 "email": "Jean.VanDamme@informat.be",
 "type": "Vader",
 "schoolcom": true,
 "factuurMailen": false
 }
]
 },
 {
 "pRelatie": 72937,
 "relatieId": "06124ed9-bec9-45e7-b5d3-0f553ca77d66",
 "type": "Moeder",
 "naam": "Somers",
 "voornaam": "Melissa",
 "insz": null,
 "geboortedatum": "1981-06-08T00:00:00",
 "geslacht": "V",
 "nationaliteitCode": "00150",
 "beroep": "Bediende",
 "burgerlijkeStand": "Gescheiden",
 "lpv": 2,

 API Version 1
 Document Version v 1.21 41

 "ophalen": false,
 "isOverleden": false,
 "adressen": [
 {
 "pAdres": 80000,
 "adresId": "67c7633a-f3d9-4f82-b600-8bc617cf851c",
 "aanspreekTitel": "Aan de moeder van",
 "aanspreekNaam": "Van Damme Thomas",
 "straat": "Grote markt",
 "nr": "45",
 "bus": "",
 "postcode": "8600",
 "gemeente": "DIKSMUIDE",
 "isFacturatie": true,
 "isAanschrijf": true,
 "isVerblijf": true,
 "isOverige": false,
 "percentage": 100
 }
],
 "comnrs": [
 {
 "pComnr": 156688,
 "nr": "0492 09 52 25",
 "type": "Moeder",
 "soort": "Gsm"
 }
],
 "emails": [
 {
 "pEmail": 22720,
 "email": "Melissa.Somers@informat.be",
 "type": "Moeder",
 "schoolcom": true,
 "factuurMailen": true
 }
]
 }
],
 "comnrs": [
 {
 "pComnr": 156689,
 "nr": "0492 25 55 29",
 "type": "Noodnummer",
 "soort": "Gsm"
 },
 {
 "pComnr": 188384,
 "nr": "025 04 09 52",
 "type": "Domicilie",
 "soort": "Telefoon"
 },
 {
 "pComnr": 188385,
 "nr": "0402 45 02 25",
 "type": "Eigen",
 "soort": "Gsm"
 },
 {
 "pComnr": 234237,
 "nr": "025 22 94 20",
 "type": "Alternatief nummer",
 "soort": "Telefoon"
 }
],

 API Version 1
 Document Version v 1.21 42

 "emails": [
 {
 "pEmail": 58608,
 "email": "Thomas.Vandamme@informat.be",
 "type": "Eigen",
 "schoolcom": true,
 "factuurMailen": false
 }
],
 "bankrek": [
 {
 "type": 2,
 "iban": "BE12378901230178",
 "bic": "BNAGBEBB"
 }
]
 },
 {…}
]
}

GET /students/{studentId}?schoolYear={schoolYear}&refdate={referenceDate}

Gets a student by it’s studentId. The institute number, school year and reference date are only used to determine the

actual registration (inschrijvingsId property).

The institute number is defined via the mandatory header “InstituteNo” and the school year must be send via the URL.

The ReferenceDate is optional, but will be calculated automatically if not provided (see request for more information).

Request

Headers

Besides the mandatory headers, no other custom headers are required.

URL

Field Type Required/optional Description

studentId GUID required

Limits the output results to a student with the provided studentId.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

If not provided a bad request with error code “BR002” and message
“Invalid student id” will be returned.

schoolYear string required

Is only used to determine the actual registration (inschrijvingsId
property). So this parameter has no limiting effect on the output result.
Format: “2022-23”

If not provided a bad request with error code “BR001” and message
“Invalid school year” will be returned.

referenceDate date optional

Is also only used to determine the actual registration (inschrijvingsId
property). So this parameter has no limiting effect on the output result.

If the reference date is not provided, today’s date will be taken.

In any case the reference date will be overridden as follows if it falls
outside the boundaries of the provided school year:

- Reference date < beginning of school year => reference date will

be overridden with begin date of school year;

- Reference date > end of school year => reference date will be

overridden with end date of school year.

 API Version 1
 Document Version v 1.21 43

Body

This request has an empty body.

Response

The response contains one student instead of a list of students. This makes the response similar to the call “GET

/students?schoolYear={schoolYear}&refdate={referenceDate}&changedSince={changedSince}”.

Example request

Request

GET https://<endpoint>/<version>/students/c5806777-4bce-4d50-afc5-9cb47f1a5f14?schoolYear=2022-23
HTTP/1.1
InstituteNo: 999999
Timestamp: 2023-01-10T00:00:00.000Z
Authorization: BEARER
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1bmlxdWVfbmFtZSI6IkluZm9ybWF0IiwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdC
IsImF1ZCI6ImFlZjAwMjdlNzNmOTU0MzVmNzc4MWEwY2ZhZDU5ZTVkIiwiZXhwIjoxNTc0NTIxODM3LCJuYmYiOjE1NzQzNDkwMzd9.
WOXKKj_a1-BaS3syFf-3k-ZT9JGS1_MLdHo4PqnE8eY
Accept: application/json
Content-Type: application/json

Example response

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Tue, 10 Jan 2023 09:36:29 GMT

{
 "student": {
 "pPersoon": 31236,
 "persoonId": "c5806777-4bce-4d50-afc5-9cb47f1a5f14",
 "naam": "Woodpecker",
 "voornaam": "Winnie",
 "geboortedatum": "2005-03-20T00:00:00",
 …
 SIMULAR TO THE GLOBAL STUDENTS CALL
 …
 }
}

 API Version 1
 Document Version v 1.21 44

Photos
This chapter describes how to:

- Get a student’s photo by studentId.

It describes all the available methods, their request/response format and provides input/output examples.

Scope pattern: api_informat_sas_leerlingen.leerlingen.{instituteNo}

GET /students/{studentId}/photo

Gets a student’s photo by studentId. The institute number is defined via the mandatory header “InstituteNo”.

Request

Headers

Besides the mandatory headers, no other custom headers are required.

URL

Field Type Required/optional Description

studentId GUID required

Limits the output results to a student with the provided studentId.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

If not provided a bad request with error code “BR002” and message “Invalid
student id” will be returned.

Body

This request has an empty body.

Response

The response contains one photo object.

Field Type Description

Id Guid Unique identifier which identifies the photo.

persoonId Guid
Unique identifier for the student. Same as the studentId provided via the url.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

foto string Base64-encoded string representation of the photo.

Example request

Request

GET https://<endpoint>/<version>/students/c5806777-4bce-4d50-afc5-9cb47f1a5f14/photo
HTTP/1.1
InstituteNo: 999999
Timestamp: 2023-01-10T00:00:00.000Z
Authorization: BEARER
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1bmlxdWVfbmFtZSI6IkluZm9ybWF0IiwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdC
IsImF1ZCI6ImFlZjAwMjdlNzNmOTU0MzVmNzc4MWEwY2ZhZDU5ZTVkIiwiZXhwIjoxNTc0NTIxODM3LCJuYmYiOjE1NzQzNDkwMzd9.
WOXKKj_a1-BaS3syFf-3k-ZT9JGS1_MLdHo4PqnE8eY
Accept: application/json
Content-Type: application/json

 API Version 1
 Document Version v 1.21 45

Example response

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Tue, 16 May 2024 11:36:29 GMT

{
 "photo": {
 "id": "88927dc9-c707-4400-b4eb-0b74bd390578",
 "persoonId": "c5806777-4bce-4d50-afc5-9cb47f1a5f14",
 "foto":
"/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxND
Q0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyM
jIyMjL/wAARCAABAAEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9
AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZ
naGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8v
P09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhc
RMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOE
hYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAI
RAxEAPwD3+iiigD//2QA="
 }
}

 API Version 1
 Document Version v 1.21 46

School history
This chapter describes how to:

- Get an overview of the school history for all students who have a registration with status “Gerealiseerd” within

the provided institute number and school year.

- Get an overview of the school history for a student by the provided studentId.

It describes all the available methods, their request/response format and provides input/output examples.

Scope pattern: api_informat_sas_leerlingen.leerlingen.{instituteNo}

GET /schoolHistory?schoolYear={schoolYear}&certificateSource={certificateSource}

Gets a “school history” overview for all students who have a registrations with status “Gerealiseerd” within the

provided institute number and school year. The institute number is defined via the mandatory header “InstituteNo”

and the school year must be send via the URL.

Request

Headers

Besides the mandatory headers, no other custom headers are required.

URL

Field Type Required/optional Description

schoolYear string required

Limits the output results to registrations within the given schoolyear.

Format: “2022-23”

If not provided a bad request with error code “BR001” and message
“Invalid school year” will be returned.

certificateSource integer optional

Is an optional parameter, used to filter the obtained certificates by
source.
Possible values are: 0 (Informat) or 1 (Discimus).

So, value 0 means that certificates registered in informat will appear
in the list. While value 1 means that the certificates read in from
Discimus will appear in the list.

If not provided via the URL, value 0 will be taken.

Body

This request has an empty body.

Response

The response contains a list of “school history” object.

Field Type Description

pPersoon integer Unique integer-value for the student within the database.

persoonId Guid
Unique identifier for the student.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

schooljaar string
Schoolyear in which the registration falls.

Format: “2022-23”

instelnr string
Official institute number of the school
Format: 6 characters (digits)

 API Version 1
 Document Version v 1.21 47

school string Descriptive name of the school.

vanDatum date
Date the registration starts
Format: : yyyy-MM-dd

totDatum date
Date the registration ends
Format: : yyyy-MM-dd or null if empty

nrAdmgrp string
Official education number (Nr administratieve groep).

Format: 6 characters (digits)

admgrp string Official education name.

studiebewijzen array List of certificates linked to the registration.

studiebewijs string

Name of the obtained certificate.
For example, if it’s a "Certificate of Professional Qualification" then certificate
name can/will be supplemented with the name of the professional qualification.
For example: “Bewijs van beroepskwalificatie: Medewerker groen- en tuinbeheer”.

uitreiking date
Issue date of the certificate.
Format: : yyyy-MM-dd

clausulering string
When a student has passed with a B certificate, the clauses will be shown for
which the student can’t choose 1 or more finalities, forms of education and/or
fields of study in a subsequent year.

Example request

Request

GET https://<endpoint>/<version>/SchoolHistory?schoolYear=2023-24&certificateSource=0
HTTP/1.1
InstituteNo: 999999
Authorization: BEARER
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1bmlxdWVfbmFtZSI6IkluZm9ybWF0IiwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdC
IsImF1ZCI6ImFlZjAwMjdlNzNmOTU0MzVmNzc4MWEwY2ZhZDU5ZTVkIiwiZXhwIjoxNTc0NTIxODM3LCJuYmYiOjE1NzQzNDkwMzd9.
WOXKKj_a1-BaS3syFf-3k-ZT9JGS1_MLdHo4PqnE8eY
Accept: application/json
Content-Type: application/json

 API Version 1
 Document Version v 1.21 48

Example response

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Tue, 02 July 2024 11:36:29 GMT
[
 {
 "pPersoon": 27396,
 "persoonId": "4515e23f-4314-4447-9b49-61403535b75d",
 "schooljaar": "2020-21",
 "instelnr": "023456",
 "school": "TEST Atheneum",
 "vanDatum": "2020-09-01T00:00:00",
 "totDatum": "2021-06-30T00:00:00",
 "nrAdmgrp": "038500",
 "admgrp": "2e jaar kwalificatiefase Medewerker groen- en tuinbeheer duaal",
 "studiebewijzen": [
 {
 "studiebewijs": "ARL Duaal",
 "uitreiking": "2021-06-30T00:00:00",
 "clausulering": null
 },
 {
 "studiebewijs": "Attest verworven bekwaamheden OV3",
 "uitreiking": "2021-06-30T00:00:00",
 "clausulering": null
 },
 {
 "studiebewijs": "Bewijs van beroepskwalificatie: Medewerker groen- en tuinbeheer",
 "uitreiking": "2021-06-30T00:00:00",
 "clausulering": null
 }
]
 },
 {
 "pPersoon": 134345,
 "persoonId": "35b0a17e-bcd4-4b20-a473-cd87a8403edd",
 "schooljaar": "2021-22",
 "instelnr": "032145",
 "school": "TEST GO! Technisch Atheneum",
 "vanDatum": "2021-12-21T00:00:00",
 "totDatum": null,
 "nrAdmgrp": "040092",
 "admgrp": "2e leerjaar A Klassieke talen (Grieks en Latijn)",
 "studiebewijzen": [
 {
 "studiebewijs": "Oriënteringsattest B",
 "uitreiking": "2022-06-30T00:00:00",
 "clausulering": "finaliteiten: Doorstroom, Dubbel"
 },
 {
 "studiebewijs": "Getuigschrift 1e graad",
 "uitreiking": "2022-06-30T00:00:00",
 "clausulering": null
 }
]
 }
 {…}
]

 API Version 1
 Document Version v 1.21 49

GET /schoolHistory/{studentId}?certificateSource={certificateSource}

Gets a “school history” overview for a student by studentId.

Request

Headers

Besides the mandatory headers, no other custom headers are required.

URL

Field Type Required/optional Description

studentId GUID required
Limits the output results to a student with the provided studentId.
Format: {42CD5A20-E22F-45D7-973C-FAB8734DEC50}

Body

This request has an empty body.

Response

The response contains the school history for one student instead of a list of students. This makes the response

similar to the call “GET /schoolHistory?schoolYear={schoolYear}&certificateSource={certificateSource}”.

Example request

Request

GET https://<endpoint>/<version>/SchoolHistory/c5806777-4bce-4d50-afc5-9cb47f1a5f14&certificateSource=0
HTTP/1.1
InstituteNo: 999999
Authorization: BEARER
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ1bmlxdWVfbmFtZSI6IkluZm9ybWF0IiwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdC
IsImF1ZCI6ImFlZjAwMjdlNzNmOTU0MzVmNzc4MWEwY2ZhZDU5ZTVkIiwiZXhwIjoxNTc0NTIxODM3LCJuYmYiOjE1NzQzNDkwMzd9.
WOXKKj_a1-BaS3syFf-3k-ZT9JGS1_MLdHo4PqnE8eY
Accept: application/json
Content-Type: application/json

Example response

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: *
Date: Tue, 02 July 2023 09:36:29 GMT
[
 {
 SIMULAR TO THE GLOBAL SCHOOLHISTORY CALL
 },
 {…}
]

 API Version 1
 Document Version v 1.21 50

APPENDIX Error-codes and descriptions

Bad Request errors

Code Description

BR000 The JSON value for {field} could not be converted to applicable type

BR001A Last Name is required

BR001B Last Name doesn't comply with the validationrule: max. length 50

BR002A First Name is required

BR002B First Name doesn't comply with the validationrule: max. length 50

BR003 Additional Names doesn't comply with the validationrule: max. length 160

BR004A Invalid Date Of Birth

BR005A Country Of Birth Code is required

BR005B Country Of Birth Code must have a lenght of 5 characters

BR006A Place Of Birth Code doesn't comply with the validationrule: max. length 10

BR007A Place Of Birth doesn't comply with the validationrule: max. length 50

BR008A Nationality Code is required

BR008B Nationality Code must have a length of 5 characters

BR009 Sex must have a valid value (1 or 2)

BR010A Invalid Insz

BR011 Eid No doesn't comply with the validationrule: max. length 12

BR012 Mobile Phone doesn't comply with the validationrule: max. length 20

BR013 Invalid Email

BR014 Name Of Doctor doesn't comply with the validationrule: max. length 100

BR015 Phone Of Doctor doesn't comply with the validationrule: max. length 20

BR016 First Language doesn't comply with the validationrule: max. length 100

BR017 Invalid Religion

BR018 Invalid Priority Group

BR019 Invalid Reason For Refusal

BR020A Max 2 Relationships are allowed

BR021 Relationship: Invalid Type

BR022A Relationship: Last Name is required

BR022B Relationship: Last Name doesn't comply with the validationrule: max. length 50

BR023A Relationship: First Name is required

BR023B Relationship: First Name doesn't comply with the validationrule: max. length 30

BR024A Relationship: Street Name is required

BR024B Relationship: Street Name doesn't comply with the validationrule: max. length 50

BR025A Relationship: House No is required

BR025B Relationship: House No doesn't comply with the validationrule: max. length 10

BR026 Relationship: House Bus No doesn't comply with the validationrule: max. length 6

 API Version 1
 Document Version v 1.21 51

BR027A Relationship: Postal Code is required

BR027B Relationship: Postal Code doesn't comply with the validationrule: max. length 8

BR028A Relationship: City is required

BR028B Relationship: City doesn't comply with the validationrule: max. length 30

BR029A Relationship: Country Code is required

BR029B Relationship: Country Code must have a lenght of 5 characters

BR030 Relationship: Phone doesn't comply with the validationrule: max. length 20

BR031 Relationship: Mobile Phone doesn't comply with the validationrule: max. length 20

BR032 Relationship: Invalid Email

BR043A Relationship: Invalid Insz

BR033 Invalid Pre Registration Id

BR034A Schoolyear is required

BR034B Invalid Schoolyear

BR035A Institute is required

BR035B Institute must have a lenght of 6 characters

BR036A Structure is required

BR036B Structure must have a lenght of 3 characters

BR037A Location Id is required

BR037B Location Id must have a lenght of 3 characters

BR037C Invalid LocationId {locationId} for this institute

BR038A Admgrp Id is required

BR038B Admgrp Id must have a lenght of 6 characters

BR039 Admgrp Detail doesn't comply with the validationrule: max. length 200

BR040A Pre Registration Date is required

BR040B Pre Registration Date must be on or before the Start date

BR041A Start Date is required

BR041B Start Date must be between beginning and end of defined school year

BR042 Invalid Registration Status

Data Not Found errors

Code Description

DNF001 No registration found for Pre Registration Id {preRegistrationId}.

 API Version 1
 Document Version v 1.21 52

Method Not Allowed errors

Code Description

MNA001 This Pre-Registration is already accepted, and can no longer be changed

MNA002 This Pre-Registration has been refused, and can no longer be changed

MNA003 This Pre-Registration is already accepted, and can no longer be deleted

MNA004 This Pre-Registration has been refused, and can no longer be deleted

MNA005 Changing this Pre-Registration to an update of personal details isn't allowed

 API Version 1
 Document Version v 1.21 53

API version history

The table below tracks the history of the different versions of the WEB API and their respective release dates. The
version number corresponds to the version number used in the URL. The type can be initial / minor / major.

Api
Version

Release Date Type Changelog

1 June 23, 2020
Initial

release
- Version 1

1.5 July 1, 2021 Minor - Request validation: valid JSON type

1.6
October 18,

2022
Minor

- New property “Insz” added at relationship level.

When an invalid Insz number is provided, a BR043A error will be returned.

1.7
November 25,

2022
Minor

- Changes made regarding “update personal details”-registration:

o preRegistrationDate is only required if admgrpId is not equal to “000000”

(no admgrp)

o MNA005 validation error added: Changing this Pre-Registration to an

“update of personal details” isn't allowed

1.8
January 10,

2023
Major

- The following 3 new calls are implemented:

o GET /preregistrations/{preregistrationId}/status

o GET /students?schoolYear={schoolYear}&refdate={referenceDate}

o GET students/{studentId}?schoolYear={schoolYear}&refdate={referenceDate}

1.9
February 7,

2023
Minor

- New property “assignedViaRegistrationSystem” added to the

“/preregistrations/save” call. As optional and with default value false.

1.10 April 25, 2023 Minor

- The following 2 calls are extended with parameter “changedSince”:

o GET /registrations?schoolYear={schoolYear}&changedSince={changedSince}

o GET /students?schoolYear={schoolYear}&refdate={referenceDate}&

changedSince={changedSince}

1.11 June 6, 2023 Minor
- New property “preRegistrationId” added to the response of the “GET

/registrations” call.

1.12 June 20, 2023 Minor

- Additional LocationId validation added to the “/preregistrations/save” call.

If the LocationId is formatted correctly, a check is done to verify whether

this id exists within the students admin module for the provided instituteNo

and school year. (“BR037C”).

- Validationrule “BR023B” (Relationship: First Name) changed: max. length 50

=> max. length 30.

1.13 March 5, 2024 Minor

- Relationship type 0 (leerling) added to the “/preregistrations/save” call.

The purpose of this type is to be able to send the address of an adult pupil

without creating a relationship.

1.14 May 21, 2024 Minor
- The following new call is implemented:

o GET /students/{studentId}/photo

1.15 July 3, 2024 Minor

- The response of the following calls is extended with Bank accounts:

o GET /students?schoolYear={schoolYear}&refdate={referenceDate}

o GET /students/{studentId}?schoolYear={schoolYear}&refdate={referenceDate}

See next page

 API Version 1
 Document Version v 1.21 54

Api
Version

Release Date Type Changelog

- The following new calls are implemented:

o GET /schoolHistory?schoolYear={schoolYear}&certificateSource={

certificateSource}

o GET /schoolHistory/{studentId}?certificateSource ={certificateSource}

1.16
September 25,

2024
Minor

- Relationship type 7 (pleegvader) and type 8 (pleegmoeder) added to the

“/preregistrations/save” call.

- The response of the following calls is extended with a studentcard number

(leerlingenkaartNummer) and a bike number (fietsnummer); a new property

Country Code (landcode) was added to the addresses.

o GET /students?schoolYear={schoolYear}&refdate={referenceDate}

o GET /students/{studentId}?schoolYear={schoolYear}&refdate={referenceDate}

1.17
November 12,

2024
Minor

- PInschr, inschrKlasId, klasId & pKlas are added to the response of GET

/registrations?schoolYear={schoolYear}&changedSince={changedSince}

call.

1.18
November 27,

2024
Minor

- PInschrKlas is added to the response of GET

/registrations?schoolYear={schoolYear}&changedSince={changedSince}

call.

1.19
January 20,

2025
Minor

- In addition to the official/main classes and sub classes, OLOD groups will

also be returned as “GroepType” in the response of GET

/registrations?schoolYear={schoolYear}&changedSince={changedSince}.

1.20
September 30,

2025
Minor

- Class teachers (klassenleraars) is added to the response of GET

/registrations?schoolYear={schoolYear}&changedSince={changedSince}

call

1.21
October 13,

2025
Minor

- The response for the following calls is extended with “overigeAddressen”.

These are the addresses other than the domicile address or the relationship

addresses.

o GET /students?schoolYear={schoolYear}&refdate={referenceDate}&

changedSince={changedSince}

o GET /students/{studentId}?schoolYear={schoolYear}&refdate={referenceDate}

 API Version 1
 Document Version v 1.21 55

References

• Wikipedia on RESTful services, http://en.wikipedia.org/wiki/Representational_state_transfer

• MSDN, http://msdn.microsoft.com

http://en.wikipedia.org/wiki/Representational_state_transfer

 API Version 1
 Document Version v 1.21 56

List of attachments

Attachment 1 – List of result codes:

Result code Resources Description

200 All
The request was received and processed correctly.
The requested data has been attached.

400 All
The server was unable to parse the request because of a problem with the content of
the request, this can be a problem with the headers / URL / body data that was
received.

401 All
The request was sent without a valid signature. This could mean that the signature
header was not present, that the signature value wasn’t present or that the provided
signature is not correct.

404 All
The request was received and processed correctly, but there is no data in the response
set.

405 All
The request was sent using an invalid HttpMethod.
Example: Sending a request as GET while only POST is allowed.

500 All

The request triggered a handled exception on the service.

The exception has been logged. Please try again and/or contact Informat about this
problem.

999 All

The request triggered an unexpected exception on the service.

The exception has been logged. Please try again and/or contact Informat about this
problem.

 API Version 1
 Document Version v 1.21 57

Sample code (.NET)

// ClientId & ClientSecret received from Informat

private const string ClientId = "informat_customer_{clientName}";

 private const string ClientSecret = "mySecretCode";

 // address to retrieve the access token

 private const string IdentityServerBaseAddress = "https://www.identityserver.be";

 // address leerlingenapi

 private const string ApiBaseAddress = "https://leerlingenapi.informatsoftware.be";

 private static async Task<string> CallApi() {

 // the scopes for which the api can be called (multiple scopes possible)

 var scopes = new List<string>

 {

 "api_informat_sas_leerlingen.voorinschrijvingen.{123456}"

 };

 // get token from identityserver

 var token = await GetToken(scopes);

 // create HttpClient and use received Bearer token

 using (var apiClient = new HttpClient

 {

 BaseAddress = new Uri(ApiBaseAddress),

 DefaultRequestHeaders = { Authorization = new AuthenticationHeaderValue("Bearer", token) }

 })

 {

 // set InstituteNo in header for which the request is done

 apiClient.DefaultRequestHeaders.Add("InstituteNo", "123456");

 // call leerlingenapi

 var result = await apiClient.GetStringAsync("/{api method name}");

 return result;

 }

 }

 private static async Task<string> GetToken(IEnumerable<string> scopes) {

 using var tokenClient = new HttpClient { BaseAddress = new Uri(IdentityServerBaseAddress) };

 var response = await tokenClient.PostAsync("/connect/token", new FormUrlEncodedContent(

 new Dictionary<string, string> {

 { "client_id", ClientId },

 { "client_secret", ClientSecret },

 { "grant_type", "client_credentials" },

 { "scope", string.Join(" ", scopes) }

 }));

 response.EnsureSuccessStatusCode();

 var content = await response.Content.ReadAsStringAsync();

 var json = JsonDocument.Parse(content);

 var token = json.RootElement.GetProperty("access_token").GetString();

 return token;

 }

